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1. INTRODUCTION

Finite elements are routinely used for analysis of real world problems in a
wide range of engineering disciplines. The types of problems for which these are
used include, but are not limited to, structural engineering, materials science,
heat transfer, optics, and electromagnetics. While linearity is a good assumption
to start with in many problems, reasonable solutions to real-life problems require
them to be treated as non-linear. It is, therefore, necessary that the users of finite
element codes be aware of the capabilities and limitations of their analysis tools.

One of the basic steps in modeling a problem with finite elements is to
break up the computational domain into discrete elements. There exist automatic
and semi-automatic mesh generation tools, which allow the analyst to mesh the
problem domain with his or her choice of element shapes. Several element-level
formulations are available in the literature for different element shapes.
Hexahedral and tetrahedral element shapes are quite extensively employed. An
earlier study on the relative performances of different element types in problems
of linear structural analysis provides guidelines for the choice of hexahedral and
tetrahedral elements. The present study attempts to extend the comparison to

non-linear problems in structural analysis and provide similar guidelines.

2. NON-LINEAR BEHAVIOR

Non-linearities are encountered in almost all real-life engineering
problems. These may be geometric, material or both. Geometric non-linearities
arise because of large deflections and/or large rotations, even under small
strains. The kinematic strain-displacement laws need to be modified suitably to
incorporate geometric non-linearities. Material non-linearities, on the other hand,
arise when the constitutive model itself is non-linear. These are incorporated

through the stress-strain relations. For general use in stress analysis, finite



elements must have a capability to handle non-linearities, both geometric as well
as material. For this reason, it becomes imperative to test the response of the
elements to both geometric and material non-linearities. A set of carefully chosen
test problems is necessary for such a study. The test problems and the reasons for

their choice are outlined in the next section.

3. TEST PROBLEMS

An element type used for general purpose non-linear finite analysis must
be capable of representing large displacements, large rotations and large strains.
While the first two problems test the geometric non-linear capabilities of the
elements, the other problems test the behavior of the elements to represent non-

linear material behavior accurately.

3.1 Cantilever beam with concentrated load at free end

A cantilever beam loaded by a concentrated transverse load at the free end
is considered. A schematic of the problem is shown in Figure 1. This problem is
useful in testing the ability of the elements to withstand large deflections.
Analytical solution is available [1] for the deflected shape of the beam, allowing

the calculation of the errors associated with finite element analysis.

3. 2 Cantilever beam with concentrated moment at free end

A cantilever beam loaded by a concentrated moment at the free end is
considered. A schematic of the problem is shown in Figure 2. The ability of the
elements to accommodate large rotations as well as large displacements is

verified in this problem.



3. 3 Hyperelastic cube under compression

A cube of hyperelastic material under compression is considered. The
compression is applied as a displacement boundary condition on the top surface.
Two cases of this problem are considered : (a) No friction exists at the top
surface, and (b) an extreme case of friction is considered, where the top surface
moves down rigidly. Schematics of the two cases are shown in Figures 3 and 4
respectively. In the absence of friction, the cube deforms to form a cuboid. When
the top surface is moved down rigidly, there is a stress concentration at the
corners and the material bulges out on all the sides. These problems test the

ability of individual elements to reproduce large strains.

4. METHODOLOGY

The basic aim of this study is to compare the performance of tetrahedral
and hexahedral elements in non-linear structural analysis. The comparison was
made between three element types available in the commercial software ANSYS®
: SOLID92, SOLID95R and SOLID45Ex ( 8 noded quadratic tetrahedron, 20
noded quadratic hexahedron with reduced integration, and 8 noded linear
hexahedron with extra shapes, respectively ). A "best of class" approach was used
to select these three element types, based on some preliminary studies on linear
structural analysis. For example, the 20 noded quadratic hexahedron with full
integration ( Solid95 ) was left out in favor of 20 noded quadratic element with
reduced integration ( Solid95R ).

The aim in each test case is to measure a norm of computational effort
(e.g., CPU time, NDOF, etc. ) against a norm of computational performance (e.g.,
L2 error norm for displacement, error in the energy norm, etc. ) for each element
type under consideration. The computational effort is varied by using different

meshes.



5. RESULTS AND DISCUSSION

Non-linear problems are generally solved by linearization. In the context
of finite element analysis, the linearization is embedded in the formulation most
of the times. An implication of this is that there are additional set of iterations
that need to be performed to obtain a numerical solution. Given a finite element
mesh, the accuracy of the solution as well as the computational effort needed to
obtain it, are dependent on how a non-linear load-step is linearized. If the load
step is linearized with few increments, unconverged equilibrium iterations may
inflate the total CPU time consumed for solving a problem. Therefore, in non-
linear analysis, reporting CPU time as a measure of computational effort is not
completely satisfactory. With this in mind, all the data for the present study is
presented in terms of number of degrees of freedom (NDOF), with an
understanding that each degree of freedom takes approximately same amount of

CPU time for solution, when a proper linearization of the load is used.

Figures 5 and 6 show the L2 norm of error in displacement and error in
strain energy, for the case of bending of a cantilever beam under concentrated
load. The linear hexahedral element with extra shapes (45E) performs the best,
followed by quadratic hexahedral element with reduced integration (95R) and
the quadratic tetrahedral element (92). Figures 7 and 8 show similar trends for a
higher non-linear load. It is seen in these cases that the error does not decrease in
proportion to the increase in NDOF. This may be because of a stiff response
(locking) of the elements to bending loads. If, indeed, such is the case, then
predominant part of the error in solution is because of the stiff response. In that
case, no strong conclusions can be drawn from this data. This needs to be

investigated in further detail.

Figures 9 and 10 show the L2 norm of error in displacement and error in

strain energy, for the case of bending of a cantilever beam under concentrated



moment. Again, the linear hexahedral element with extra shapes (45E) performs
the best, followed by quadratic hexahedral element with reduced integration
(95R) and the quadratic tetrahedral element (92). Figures 11 and 12 show similar
trends for a higher value of moment. The behavior in these cases is similar to that

in the case of bending under a point load. The observations made about locking

are true for this test problem too.

The problem of compression of a hyperelastic cube tests the large strain
capabilities of the elements thoroughly. This problem shows a slightly different
trend for the relative performance of different element types. Figures 13, 14 and
15 show the performance trends. The element type 95R is the best, followed by 92
and the linear element 45E. The results are consistent with and without friction
during compression. This set of results is slightly different from the cases of
bending. This makes it even more important to carefully investigate whether the

errors in the bending analyses are predominantly due to locking.
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Figure 1. Cantilever beam under transverse load
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Figure 2. Cantilever beam under concentrated moment
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Figure 3. Hyperelastic cube under compression
without friction on the top surface




Figure 4. Hyperelastic cube under compression with
friction on the top surface
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Figure 5. L2 error norm of displacement vs. NDOF
for cantilever beam under concentrated load, PL2/EI=6
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Figure 6. Error in strain energy vs. NDOF
for cantilever beam under concentrated load, PL2/EI=6
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Figure 7. L2 error norm of displacement vs. NDOF
for cantilever beam under concentrated load, PL¥/EI=12
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Figure 8. Error in strain energy vs. NDOF
for cantilever beam under concentrated load, PL%EI=12
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Figure 9. L2 error norm of displacement vs. NDOF
for cantilever beam under concentrated moment, ML/EI=6
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Figure 10. Error in strain energy vs. NDOF
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Figure 11. L2 error norm of displacement vs. NDOF
for cantilever beam under concentrated moment, ML/EI=12
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Figure 12. Error in strain energy vs. NDOF
for cantilever beam under concentrated moment, ML/EI=12
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Figure 13. L2 error norm of displacement vs. NDOF
for hyperelastic cube under compression without friction
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Figure 14. Error in strain energy vs. NDOF
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Figure 15. L2 error norm of displacement vs. NDOF
for hyperelastic cube under compression with friction
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